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ABSTRACT
Recently, federated HPC and cloud resources are becoming in-
creasingly strategic for providing diversified and geographically
available computing resources. However, accessing data stores
across HPC and cloud storage systems is challenging. Many cloud
providers use object storage systems to support their clients in stor-
ing and retrieving data over the internet. One popular method is
REST APIs atop the HTTP protocol, with Amazon’s S3 APIs being
supported by most vendors. In contrast, HPC systems are contained
within their networks and tend to use parallel file systems with
POSIX-like interfaces. This work addresses the challenge of diverse
data stores on HPC and cloud systems by providing native ob-
ject storage support through the unified MPI I/O interface in HPC
applications. In particular, we provide a prototype library called
LibCOS that transparently enables MPI applications running on
HPC systems to access object storage on remote cloud systems. We
evaluated LibCOS on a Ceph object storage system and a traditional
HPC system. In addition, we conducted performance characteriza-
tion of core S3 operations that enable individual and collective MPI
I/O. Our evaluation in HACC, IOR, and BigSort shows that enabling
diverse data stores on HPC and Cloud storage is feasible and can
be transparently achieved through the widely adopted MPI I/O.
Also, we show that a native object storage system like Ceph could
improve the scalability of I/O operations in parallel applications.
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1 INTRODUCTION
Recently, federated high-performance computing (HPC) and cloud
systems have been considered viable solutions for providing ge-
ographically available computing resources. However, HPC and
cloud systems have evolved to meet different application needs.
HPC systems have reached the exascale milestone, and users seek
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new ways to make their workflows leverage all available process-
ing, storage, and network resources, usually consisting of top-end
hardware to reduce time to scientific discoveries. On the other hand,
warehouse-scale computers (i.e., data centers) base themselves on
low to mid-end hardware, and developers are usually concerned
with using the resources as efficiently as possible, since a longer
response time of a certain service may violate the contract with
customers on the quality of service (QoS) while the uncontrolled
usage of resources may lead to increased cost and reduced profit
margin [2, 11, 19].

The idea of object storage has been widely embraced in cloud
computing as it supports cost-effective application scaling and data
resilience. Major cloud companies such as Amazon, Google, and
Microsoft provide their own object storage services to consumers.
As most users of these services are not located within the same
network as the storage server, communication between client and
server is usually handled through the internet over the HTTP pro-
tocol. In the HPC community, CERN is a major player that has
already embraced object storage as a solution for storing and re-
trieving large amounts of data through HTTP [17]. In that sense,
the Amazon Simple Storage Server (S3) API [22] is currently one in-
dustry standard to access and manipulate object storage data. Even
if the S3 API standard is fully proprietary, it is widely supported
by many open-source object storage systems, including Ceph [27]
and MinIO [18]. Also, popular frameworks like OpenStack Swift [1]
provide similar S3-compatible interfaces.

HPC systems are often equipped with high-performance paral-
lel systems to meet the massive I/O needs of large-scale parallel
applications. Today, as applications run on pre- and exascale ma-
chines, they also generate tremendous data sets that stress the
capacity and throughput of parallel file systems. Moreover, the ex-
treme parallelism in these applications results in concurrent file
accesses that have exacerbated scalability issues due to the strong
consistency in the file systems. The Lustre Parallel File System (Lus-
treFS) [25] is one widely adopted file system on HPC systems. For
instance, the latest Top500 in 2022 shows that #1, #2, and #3 - Fron-
tier (USA), Fugaku (Japan), and LUMI (Finland) supercomputers
- all provide LustreFS. Therefore, most existing HPC applications
have been ported to use the interface of file systems for their I/O.
When employing object storage on HPC systems, in order to ease
the programming burden for application developers, object storage
servers in HPC environments tend to expose a POSIX-like file sys-
tem interface, which is easily compatible with MPI I/O or libraries
such as HDF5 and NetCDF. The drawback of this approach is that
some consistency guarantees from POSIXmust be ensured, which is
usually achieved through imposing serial locks. As the applications
continue to scale, so do their I/O needs, and thus, the serialization
and consistency semantics increasingly become the bottleneck on
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HPC systems [21, 23, 24]. Also, different from the use scenarios in
cloud computing, an HPC system has both clients and its object
storage server located within the same network.

In this work, we explore using native object storage to support
common parallel I/O patterns in HPC applications. The goal of
this work has twofold. First, on the transition towards federated
computing resources, how to provide converged support to HPC ap-
plications to access diverse data stores on geographically distributed
cloud storage systems? Second, as shown in existing studies [24],
some consistency semantics become unnecessary in HPC I/O use
scenarios but are still imposed due to POSIX compliance. Therefore,
different from previous works that employ POSIX-like interface
atop object storage, e.g., CephFS [15, 29], we leverage MPI I/O as
the unified interface in applications and provide a scalable mapping
between data objects and I/O operations to bypass the serialization
points in file systems. Hence, this work focuses on designing and
mapping between representative parallel I/O operations and object
storage operations.

To assess the feasibility of our approach, we provide a proof-
of-concept implementation that leverages the portability of the S3
APIs and the native object storage on Ceph. Our design principle
is to minimize code modifications in existing HPC workloads. We
achieve this by providing a library called LibCOS (COS: Converged
Object Storage) that intercepts MPI I/O calls as in the existing MPI
applications. LibCOS then transparently converts parallel reads and
writes into a set of organized data objects through S3 operations.
Our research contributions in this paper are summarized in the
following:

• We propose a design that uses object storage natively in
support of representative parallel I/O operations in HPC
workloads.

• Our design enables converged data access from HPC appli-
cations to data stores on cloud storage systems in federated
computing and data resources.

• We provide a prototype implementation called LibCOS that
leverages the portability of the S3 APIs and transparently
transforms MPI I/O operations in HPC applications.

• We evaluate LibCOS on a Ceph storage system and an HPC
system in three applications, including HACC, BigSort, and
IOR.

• We also provide a performance characterization of core S3
operations for enabling parallel I/O operations and their
performance tradeoffs.

2 STORAGE INTERFACES
2.1 POSIX I/O
The Portable Operating System Interface (POSIX) is the most com-
monly adopted I/O interface on HPC systems. The success of POSIX
stems from the fact that it provides a set of standards to maintain
compatibility between operating systems. The POSIX I/O provides
a small set of interfaces that define how a file must be accessed
within the operating system – a open() command returns the file
descriptor, the read() fetches data from files into the memory, the
seek() changes the position of the file descriptor where you start
write() or read() data and then the close() operation finally
closes the file.

As file descriptors must be managed by the operating system, an
overhead penalty is introduced as the system scales [16]. Further-
more, POSIX I/O has strong consistency guarantees for writes. For
instance, it may have to block an application’s subsequent execution
until the system can guarantee that all reads following the write
operation will see the update from the last write. While this might
not be an issue for small-scale computer systems, it can become
a scalability bottleneck for large-scale parallel applications that
consist of a large number of processes writing multiple to shared
files concurrently.

The other scalability issue in POSIX is associated with metadata
management. The filesystem needs to track all of the associated
metadata to each stored file, such as the access permissions and last
modified date, regardless of whether they are identical in the same
directory. When dealing with a large number of files as seen in
either HPC or cloud systems, the developers offload the complexity
of managing file directories to the operating system. They do not
need to track where the files are located (or even its name), and this
abstraction becomes one more factor of the overhead in POSIX-like
systems.

Parallel File Systems, such as Lustre [4, 25], OrangeFS [3], and
Cray’s Datawarp [12], either bypass the page cache (used by the
operating systems to mitigate the latency penalty for I/O) or relax
POSIX consistencies for some I/O patterns or use locking mecha-
nisms to ensure that a file cannot be read by a process while being
modified by another one. This comes with tradeoffs, consisting of
latency penalties or dirty cache pages.

2.2 MPI I/O
The MPI standard introduced a set of I/O operations in the MPI
version 2.0 to accommodate the increasing I/O needs in HPC appli-
cations. MPI I/O was created as a solution to address the portable
parallel I/O problem that existed at that time with the POSIX pro-
gramming interface. One advantage of using MPI I/O is to express
data partitioning, including non-contiguous data layout, using MPI-
derived data types to express common I/O patterns for accessing a
shared file to avoid intermediate steps like packing and unpacking
data buffers. Using MPI-derived data types to describe well-defined
collective I/O operations also enables parallelism and portability.
The specification also defines all the interfaces for operations that
should be done with the files - from opening to writing, either
individually or collectively - and also the consistency semantics.
OpenMPI and MPICH are two widely available open-source MPI
implementations on most HPC systems. There are also vendor-
specific implementations such as IBM’s Spectrum MPI, used by the
Summit and Sierra supercomputers.

Still, MPI I/O implementations, such as ROMIO, use POSIX I/O,
and therefore follow POSIX I/O’s consistency semantics. Because
MPI I/O is part of the MPI standard, developers with legacy code
bases can leverage its portability when migrating their codes to
different HPC systems or filesystems that support MPI. In this
work, we will concern mainly with the functions MPI_File_Write,
MPI_File_Read, MPI_File_Write_at and MPI_File_Read_at from
the MPI standard. The first two functions are usually associated
with operating in a file in its entirety, while the last two are required
when one desires to write or read in a specific offset.
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2.3 Object Storage
Given the need for scalability for serving multiple concurrent re-
quests - both on reads and writes - at the same time that storing
a large number of files is necessary, major cloud players adopted
object storage as a solution: as of 2021, Amazon announced that it
holds over 100 trillion objects in its servers 1. However, the orig-
inal idea of object storage dates from the early 90s by Carnegie
Mellon University [7], and the standard is currently maintained by
the T10 committee of the International Committee for Information
Technology Standards (INCITS).

An object storage system is a way of offloading work from the
host kernel while maintaining or improving performance and se-
curity 2. This offloading works by abstracting the user from the
necessities of managing a typical local filesystem, as the object stor-
age device will handle all those needs under the hood. The major
tradeoff is that it is assumed that the user does not need a hierarchi-
cal structure for the organization of the files (called "objects" in this
setting), such as folders or filenames, but instead knows directly
what he/she wants to access.

As some non-relational databases[6, 14], object storage systems
typically work through the establishment of a key-value pair. The
"key" is a globally unique identifier (i.e., "tag") for the stored object
while the "value" refers to the own binary data. In addition, it is
possible to add metadata information to the object such as date,
content type and content length.

Figure 1 gives an overview of how some object storage systems
work in practice. An object is usually whatever data the user wants
it to be, as the data is not interpreted in any way, and it is stored
in a flat namespace in memory. An object storage device (OSD)
might contain multiple buckets, which can be analogue to root
folders, and each of them contains one or more objects. Many
object store systems replicate objects in multiple OSDs in order to
ensure redundancy and fault tolerance.

2.4 Ceph
Ceph is a distributed filesystem which supports object storage
through the RADOS backend [26]. A usual Ceph cluster consists of
at least three working nodes with monitors, managers, and object
storage devices. The monitors are responsible for ensuring fault
tolerance and redundancy whenever one of the nodes is down.
The managers are the ones to receive the incoming requests and,
through the usage of the CRUSH algorithm [28], determine where
the object can be retrieved or put as fast as possible. CRUSH takes
into consideration the layout of the cluster (including the data
centre, room, row, and rack) to pseudo-randomly map the data to
the OSDs, which are the servers whose only purpose is to store
data. The OSDs use Ceph’s own backend, named Bluestore, to
manage data within disks, directly consuming raw block devices or
partitions to avoid additional layers of complexity.

Ceph provides access to its system either through a mounted
POSIX-like filesystem (named CephFS), through the S3/Swift APIs
or through its own RADOS API. In order to be able to expose the
first option to its users, which can be done through mounting,

1Liam Tung. AWS: S3 storage now holds over 100 trillion objects. https://www.zdnet.
com/article/aws-s3-storage-now-holds-over-100-trillion-objects/
2J. Corbet. Linux and object storage devices. https://lwn.net/Articles/305740

Ceph also needs to be provided with a metadata server (MDS) in
addition to the three working nodes described above. The metadata
server manages the filesystem namespace, coordinating access to
the shared OSD cluster.

The major advantage of using the exposed filesystem is the fact
that one can use the MPI I/O code without any major changes, but
it comes with two drawbacks as well. First, there is the need to
provision hardware that could be used for other matters - an MDS
for a large cluster will use at least 64 GB of cache memory and two
to three CPU cores. Furthermore, at least two MDS must coexist
in order to maintain the reliability of the system 3. The second
issue is that, by exposing the filesystem, the user becomes bound to
some POSIX-like consistencies as described in Section 2.1. In order
to overcome such issues, Ceph also provides the LAZY_IO option
that relaxes some of these consistency guarantees, in particular
by allowing buffered reads/writes when an object is opened by
multiple applications on multiple clients.

In high-performance computing systems, a case usage for Ceph
can be seen at CERN: the European institute uses it both in hyper-
converged infrastructure via CephFS (i.e., storage and processing
units at the same system) and for cloud access through HTTP
protocol, amounting to a few petabytes of total storage [17]. In
industry, Digital Ocean, also a major provider of cloud services, uses
Ceph as well albeit mainly for its block storage services, while Red
Hat and Canonical provide enterprise-level services for companies
that might be interested in adopting or are using this technology.

Another system that is currently being used to leverage object
storage for HPC is the Distributed Asynchronous Object Storage
(DAOS), currently developed by Intel. As an object storage sys-
tem, DAOS is built to offload the I/O operations from the kernel
to the user space. It uses the Intel Optane technologies - both in
memory and SSDs - to build a tiering system where meta- and low-
latency data are stored on memory while the bulk data is stored on
NANDs and NVMe disks - unlike Ceph, it does not support slow
disks such as HDDs. Objects can be accessed either through the
native DAOS API (named libdaos) or through middlewares such
as Hadoop, Spark, MPI I/O and HDF5. A POSIX-like emulation layer
is provided by DAOS also under relaxed constraints, in a similar
fashion as the one provided by Ceph. The Aurora exascale super-
computer at Argonne National Laboratory (USA) will use DAOS
for I/O scalability.

3 REST AND S3
REST is an acronym for “Representational State Transfer" [8], a
machine-to-machine (usually, a client-server) architectural inter-
face which includes constraints for statelessness, cacheability, uni-
form interface, layered system, and code-on-demand. As REST
delimits the client and server, it allows those parts to evolve in-
dependently while also improving the portability across multiple
platforms due to its uniformity. Nonetheless, REST also diminishes
the access overhead as the statelessness is a guarantee that a server
session will not be stored.

REST web APIs are commonly used atop of HTTP methods
(such as PUT, GET, POST and DELETE) to access resources via

3Deploying Metadata servers. https://docs.ceph.com/en/quincy/cephfs/add-remove-
mds/
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Figure 1: Image displaying the entire path that an object goes through to be stored. (1) An object is sent from the client through
the (2) cloud, associated with a (key, value) pair. (3) The request will reach a managing front-end who will distribute the files
among the available object storage devices. (4) After some time, the objects will be replicated in different buckets for redundancy.
(5) A bucket consists of multiple different objects in a flat namespace, whereas (6) an object consists of an ID, some metadata
and the data itself.

URL-encoded parameters and the use of JSON or XML to trans-
mit or retrieve data, which is then parsed at some point. Among
cloud services that provide REST APIs are Prometheus (for logging),
Jenkins (for continuous integration) and Elasticsearch (for search
requests). Social networks such as Instagram and Twitter also pro-
vide access to the massive amount of data they have through REST
APIs.

Amazon S3 is a REST API that communicates through HTTP
and HTTPS. It is not an open specification, but rather defined
by the Amazon Web Services company itself, suiting the features
implemented by its storage service. Even so, this has not prevented
other players to provide compatibility with such interface in order
to ease migration and portability between different services.

The S3 specification defines how authentications and request
signing occur, as well as the request and response HTTP headers.
PUT and GET are among the most relevant S3 operations, respec-
tively related to the upload and download of a certain object. One
can also create buckets, list the contents, delete objects and copy or
add metadata into those objects as well.

A relevant supported feature by the specification is the mul-
tipart upload (MPU), which allows the object storage server to
merge different objects into a single one, which works similarly to
HTTP/1.1’s Multipart Request. For this, one must initiate a request
with the server for MPU to retrieve a request ID, upload all relevant
parts with this request ID attached along with an associated part
number and, finally, send a request to close the uploading process,
where the object storage server will then proceed to merge those
files in the specified order. While this is an interesting feature that
can be used together with asynchronous uploads, a large file that
is to be uploaded by different ranks might have some overhead due
to the need of sharing the request ID and also the uploading status
between them.

4 METHODOLOGY
This paper implements a library that intercepts MPI I/O calls and
transforms such calls into S3 operations for object storage servers,

uploading or retrieving data directly from/to the memory buffer.
Aside from the obvious benefit of the easiness that allows develop-
ers to shift the storage paradigm of their application, this approach
pursues a strong case for portability: it enables the applications
to interact with many diverse object store systems (OSS), some of
which may be located over the internet, and also be executed in dif-
ferent computer systems as the developer does not need to concern
about the storage whereabouts anymore as the generated maps will
take care of it. The second significant obvious benefit is that, given
that the developer knows which files he wants to access (either for
"read" or "write" operations), a connection made directly to the OSS
through HTTP offloads the operating system from the complexity
of mounting and handling POSIX-like interfaces, decreasing the
overall I/O overhead.

Our read/write approach for object storage servers can be thought
of as "one IO call deals with one or more objects", where the object
can be either the whole memory buffer or based on how much the
current MPI rank intends to write or read on disk. As a consequence
of this, the third benefit to be considered is that our approach vastly
simplifies all I/O operations under the hood as they will be handled
in the same way regardless whether the buffer is being written/read
by one or by more ranks in an individual or shared file. Alas, other
operations such as overwriting and writing in-between offsets on a
file are nothing more than generating a new object and correctly
mapping in the metadata.

The remainder of this section will dive into the technical details
of how our approach works and how it was implemented.

4.1 S3 Client
Many libraries provide implementations for the S3 APIs in C/C++,
which can be further linked to other codes in the C/C++ language
or interfaced with Fortran or other programming languages. In
particular, during this work, we found that the libs3 and the aws4c
libraries are used in the standard I/O micro-benchmarks called IOR.
However, the libs3 library has not been relevantly updated for
over four years (i.e., does not support parallel transfers as libcurl
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Figure 2: The architecture of the LibCOS library and its main workflow. (1) To make use of the PMPI interface, the original
code should only concern with inserting the header for our PMPI API, which contains all the MPI_File replacement functions
for the original code. (2) Our PMPI API is linked to LibCOS, which does not contain any MPI-related code, and is the only point
of communication with the AWS SDK. LibCOS is responsible for all the communication with the object storage system, issuing
PUT and GET operations. (3) In an example of individual writes, each rank is writing a different buffer to the object storage
system as an individual object, as seen in (4). (5) In the case of a collective read, assuming that the large original file was split
into different objects, each rank will also retrieve the object (or parts of it) according to the provided offset and count.

only implemented it in 2019), and the aws4c library was lastly
updated in 2011.

To obtain the modern functionalities, in this paper, we use the
Amazon Web Services Software Development Kit (AWS SDK) as
a means to access an object storage server through the S3 API in-
terface. There are a few issues with this approach, however. First,
Amazon recently introduced a new S3 Client based on its own Ama-
zon Common Runtime Environment (CRT), in which the HTTP/1.1
andHTTP/2 standards were re-implemented using the C99 standard
to make more usage of certain asynchronous features. However,
as of October 2022, it is not possible to use the new S3-CRT client
due to the lack of features related to changing connection ports 4.
So we decided to use the traditional S3 client based on libcurl,
which also supports important features from the SDK, such as mul-
tiplexing, multipart uploads and asynchronous operations. For the
client to access the Ceph storage system, we had to disable the SSL
connection (as our Ceph testbed was using an HTTP port instead
of HTTPS) alongside the certificate signing while overriding the
connection IP to our host on the testbed.

Traditional HTTP methods for object storage are based on PUT
and GET operations, which can be used to support MPI IO’s write
and read operations. Non-blocking MPI I/O operations can also be
achieved through asynchronous requests. In the same way, Col-
lective I/O operations can be thought of as multipart uploads, as
discussed in the previous section, where multiple parts can be writ-
ten concurrently by different processes and only merged later on,
i.e., deferred synchronization off the critical path. The AWS SDK
eases most of the programming burden for those operations, while
additionally providing an interface for ranged reads, where you
can select the range of bytes you want to read from a certain object.
We believe that this ranged operation can be used for emulating
MPI_File_SetView calls.

4"Host cannot be resolved when port is specified in endpoint override for S3 CRT
client". https://github.com/aws/aws-sdk-cpp/issues/1844

Figure 3: An image that briefly displays how object mapping
is performed by LibCOS. (1) From a large buffer in which
ranks 0 and 1 are attempting to write different parts of it, (2)
they initially check if a global map for the file exists and, if it
doesn’t, create it and add their own local map file name there.
(3) This local map file is appended with metadata every time
a rank writes a new object. For read, the rank iterates over
each local map listed at the global one and searches for the
offset it desires. When both the offset and filename desired
match, the associated partName is retrieved through a GET
operation.

4.2 Implementation
LibCOS is implemented through the usage of the Profiling MPI
Interface (PMPI). Fig. 2 provides a diagram with a high-level im-
plementation description. The original MPI-based code (i.e., the
application) requires only the additional insertion of the external
headers with our code which will overwrite the original MPI calls.
One of our two headers consists of only MPI-related code, which
is partly responsible for managing the data structures that will be
passed to an independent LibCOS, related to the second header and
which is responsible for handling all the communication between
the object storage server and the client as well as interfacing with
the AWS SDK for all S3-related operations.

In order to correctly translate the calls between the MPI I/O
domain and the object storage server, LibCOS maintain a set of
YAML files with associated metadata. There are two types of YAML
files to be accessed during a request: a local map generated per rank

https://github.com/aws/aws-sdk-cpp/issues/1844
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during a write phase and contains information such as filename,
count, offset of the part and datatype, and the global map, which
only consists of the location of all local map files for that file. Fig. 3
shows the structures of such maps as well as how they are accessed
during the write or read stages. Additionally, an auxiliary map
containing only the number of parts that a rank has generated is
also created and used, but it serves only to help the library to know
how many parts it should iterate.

Based on the mapping algorithm described above, we imple-
mented the MPI-IO functions. In the Open stage, LibCOS will check
for the existence of a global map for the associated filename and, if
not, will create it while also storing the metadata associated with
that initial call. The Close function is implemented by LibCOS
but does not perform any major role as the idea of ending access
to a local file does not exist in this context. Other calls, such as
MPI_File_Get_Size, can be later implemented by checking the
associated local metadata instead of querying the entire object at
the server.

When dealingwith either MPI_File_Write or MPI_File_Write_at,
LibCOS will write all the metadata into a local map file. For simpli-
fication purposes, a write is considered a write_at without offset.
Based on the datatype provided by the call, the memory buffer is
then converted into a string stream and then an S3 PUT opera-
tion is issued for that string stream. When the outcome is listed as
successful, LibCOS returns success and the application can resume.

During the execution of a MPI_File_Read or MPI_File_Read_at,
LibCOS iterates over the global map file (which has the same name
as the provided filename from open) and, by iterating in all listed
map files, it searches for the desired offset and retrieves the associ-
ated part name. A read is considered a read_at for a part name with
an offset equal to zero. Henceforth, a GET operation is issued at this
point and, upon conclusion, the obtained string stream is converted
to the datatype written in the YAML file. The obtained memory
buffer is transferred to the buffer address provided by the original
call. If everything succeeds, the application resumes normally.

The connection to the object storage server is exclusively done
during the write or read stages. During such stages, an additional
YAML file - server.yaml - is verified to retrieve data such as server
IP, the bucket in which data should be accessed and the credentials
(access key and secret key). If the file does not exist in the same
place as the application, the write or read operation will not be able
to proceed.

As the usage of LibCOS requires only the addition of the header
files and also the library linking during the compilation stage, there
are some limitations introduced by this model. First, the AWS SDK
imposes restrictions on how it can be used and, due to this, the SDK
must be set up, started and stopped for every write or read call.
Establishing a handshake with the object storage server every time,
as opposed to keeping a persistent connection, brings an overhead
that is later examined in this paper. Another limitation is that, in
our model, all PUT and GET operations use a string stream, which
means that the data must be converted back and forth between
different datatypes. Although the convert stage increases as much
as the data, our analysis has shown that the total time is mostly
dominated by the transfer time.

The need to convert data brings another important limitation:
while there is an explicit conversion between some of MPI Types

(e.g., MPI_SHORT, MPI_FLOAT, MPI_CHAR) and C datatypes (short,
float, char), there is not a specific correspondence for (MPI_BYTE).
This imposes that the developer must create an appropriate type
conversion to accurately represent the data it is writing or reading.
This is further discussed in Section 5.2.

5 EXPERIMENTAL SETUP
5.1 Hardware Infrastructure
In this study, we use a supercomputer (named "Dardel"), located at
KTH Royal Institute of Technology, and a single-node computer
system (called "cloud testbed"). Dardel is an HPE Cray EX machine
running a custom version of SUSE Linux 15.1 with 554 nodes, con-
taining a dual AMD EPYC 2 (Rome) with 128 processors in total per
node. The memory within nodes ranges from 256 GB to 2 TB DDR4,
but this work used only nodes with 256 GB ones. The supercom-
puter uses the Lustre Parallel File System for a total of 15 petabytes
of storage. Network-wise, it has all nodes interconnected with an
HPE Slingshot network using a Dragonfly topology, with up to 100
Gbps of connection internally and practical measurements reveal
that its connection to the internet is about 3 Gbps for downloads
and 600 Mbps for uploads.

The cloud testbed has a single Intel i7-7820X processor, with 16
cores in total, and 32 GB of DD4 memory at 2133 MHz. In terms of
storage, the system contains an Intel Optane SSD 900p with 480 GB,
a Kingston UV400 SSD, 2x Seagate Barracuda with 2 TB each and a
Samsung EVO NVMe driver with 1 TB, which the operating system
(Ubuntu 22.04) is running. This cloud testbed also includes an Intel
I219-V single-port 1 gigabyte Ethernet controller. The system is
connected via a Gigabit Ethernet connection to the HPC testbed.

5.2 Applications
This work will present results based on two applications derived
from the CORAL-2 suite, provided by the Lawrence Livermore
National Laboratory (USA), and the IOR benchmark. It is important
to note that, as the AWS SDK recommends the usage of CMake to
link with applications (due to the large number of files involved),
we created a CMakeFile for each of them which seamlessly built
and linked them to LibCOS. Since applications like HACC and IOR
are complex and span thousands of lines, we opted to use stripped-
down versions of them while conserving the I/O patterns.

The Hardware/Hybrid Accelerated Cosmology Code (HACC)
is an application used to "simulate the formation of structure in
collisionless fluids under the influence of gravity in an expanding
universe" [10]. Here, we use a stripped-down version of HACC
named "HACC-IO"5. This stripped version uses the pattern of each
rank generating a full independent particle file, and each particle
file will be written (or read) 10 times at different offsets. The par-
ticle size is the only parameter that one can set when starting the
application. The data written into the file consists of arrays with dif-
ferent datatypes and the header, which is written as MPI_BYTE but
is expressed as a C++ int64_t type (and thus, the writing/reading
operation for that had to be particularly implemented in LibCOS).

The BigSort benchmark is intended to sort a large number of
64-bit integers and it contains multiple mini-applications within it

5"HACC-IO": https://github.com/glennklockwood/hacc-io

https://github.com/glennklockwood/hacc-io
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that perform different stages of the overall process. One of those
applications is named Genseq, which writes to a large, shared file
a specified sequence of numbers, in sequential order. It also takes
the DRAM allocation as a parameter to manage how much the
application can write at each time in the file. Even though it is
generating numerical sequences, the data is ultimately written as
char type.

IOR is a widely used I/O benchmark tool and allows a high
degree of customization on how one desires the I/O operations to
be emulated. IOR supports a large number of APIs - POSIX, MPI I/O,
MMAP, HDFS, and others - through its AIORI backend, and allows
a high degree of customization when starting the application: for
example, one can choose the number of blocks and segments, the
transfer size, the API to be used, or if the I/O operations should be
executed in a sequential or random pattern. In this work, we used
IOR to write a shared single file in a random pattern (as opposed to
the sequential one of Genseq) while keeping constant the number
of segments and block size.

We stripped IOR to the bare minimum of its compilation require-
ments to run the MPI I/O backend within our CMakeFile. However,
since the AWS SDK is written in C++ and IOR is in C, we had to
do some minor changes to the original code to be able to compile
the application with a C++ compiler and link it with our library.
These modifications were essentially solving issues related to code
that is conforming with GCC but not with g++ and removing the
MPI_File_Get_Size call as this was not implemented in LibCOS.
For HACC and BigSort, the only changes were the addition of the
LibCOS headers into the code.

5.3 Configuration of Object Storage Server
Our object storage server consists of a Ceph cluster running on the
cloud testbed. As the object storage server requires a cluster with at
least three worker nodes and one coordinator node to properly run,
this setting was emulated through Minikube, which implements
a local Kubernetes cluster. The emulation of such nodes can be
done either within a virtual machine (e.g., KVM2, QEMU) or within
a container (e.g., Docker or Podman). Each pod has its own IP
within the cluster. However, this approach does not allow one to
access those nodes externally (i.e., from the internet) and, in order to
bypass this issue, Minikube also provides the bare-metal option and,
by exposing a port of Ceph’s manager node, it is possible to access
from anywhere through the cloud testbed’s IP. The tradeoff is that
Minikube supports only 1 node in the bare-metal configuration, so
each pod is effectively emulating an entire node. Fig. 4 shows the
architecture of this configuration.

Ceph was installed with Rook, a storage operator for Kubernetes.
In our configuration of Ceph, there’s a single manager, a single
monitor and a single object storage daemon, for a total of three
Kubernetes pods. Each pod has effectively reserved 2 CPU cores
and 256 MB of RAM. This effectively removes any redundancy from
our system. Additionally, no metadata servers are used as we did
not intend to deal with the CephFS interface. Furthermore, as Ceph
does not enforce any types of disk to use (i.e., it will accept either
SSDs or traditional hard disks), the object storage consisted only of
the Intel Optane 900p SSD (480 GB) to enforce the highest possible
I/O throughput.

Figure 4: A conceptual illustration of the configuration of our
cloud testbed. (1) The hardware includes a booting disk, used
by the operating system, and an empty NVMe disk, without
any filesystem within. (2) On the user space layer, Minikube
deploys Kubernetes in a single node (multinode is not sup-
ported on bare-metal) and (3) within the node, multiple pods
with different applications for Ceph are started. Each pod has
an internal IP that can be used for communication between
pods, but only (4) the manager pod is exposed to the internet
and receives requests. (5) When a request arrives, the man-
ager redirects to the OSD pod, which has direct access to the
NVMe disk.

6 RESULTS
The overall idea of all the experiments, which will use the appli-
cations described earlier, is to transfer or receive directly from/to
the memory buffer to/from an object storage server. While both
host and server are very physically proximal, they do not share the
same network, but rather connect through the internet, which puts
an enormous delay when compared in performance with local MPI
I/O operations.

That said, the results presented here should be seen through the
lens of i) viability, (i.e., the approach works, even if it is not in an
ideal setting for high performance), ii) scalability and iii) portability
(as the storage is located at a different server, which makes a case
for Federated HPC storage). The standard deviation was very small
in the plots shown in this section, hence it is not displayed.

6.1 Performance Characterization of S3
Operations

As it was stated in Section 4.2, there is an implicit overhead of
having to establish a connection with the object storage server
at every operation. In this context, we want to measure the over-
head caused by having to set up the initial connection to the cloud
testbed instead of using a persistent one. The experiment carried
out for investigation is setting a synthetic application for PUT/GET
directly at LibCOS and uploading the same data over and over
without closing the connection (but changing the associated part
name to avoid possible effects from overwriting in the server). Each
operation is performed ten times before closing the connection.
The execution times shown were collected through the usage of
ctime library and the timers were in place right before and after
the PUT/GET operations. This experiment was executed using only
one rank.
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Figure 5: Plots measuring the overhead for (left) PUT and (right) GET operations with varying transfer sizes. The dashed green
line is the ratio between the execution time of the 1st and the 10th operations.

As shown by Fig. 5, there is a clear difference between the first
and the other connections - mainly because there is some overhead
due to setting this initial connection is avoided later on. However,
it is possible to verify that, as the size of the buffer increases, the
overhead becomes very minor in relation to the total execution
time as the latter starts to be increasingly dominated by the transfer
time.

6.2 Independent Parallel I/O Patterns
An independent parallel I/O pattern means that each rank will take
care of its own file, without any intervention from other ranks.
That is what happens at HACC. The times used here are reported
by HACC-IO’s own timer and concern the total execution time -
which includes either 10 reads or 10 writes regardless of the chosen
particle size. We performed a weak scaling analysis and compared
the results among multiple ranks, as can be seen in Fig. 6.

While it is clear that execution times are worse when you in-
crease the number of ranks, there are two things to consider: first,
that HACC’s code includes some non-MPI I/O operations such as
broadcasting and scattering, which significantly affect execution
times as you increase the number of ranks. Second, as the results are
related to weak scaling, one should consider the trade-off between
having a ten to twenty percent slower execution time to the benefit
of having eight times more data written or read from the server.

6.3 Collective I/O Patterns
In this pattern, the applications write or read to/from a single file
that is accessed by multiple ranks. Genseq solely focuses on writing
operations and splits the workload between the available ranks.
The left side of Fig. 7 shows the obtained results for weak scaling
and strong scaling, and also for the scale of PUT with a varying
memory buffer size.

The major points to notice are that the S3 curve in Fig. 7.a is
essentially straight, which means that the time stays mostly stable
(with small variations, but the scale does not allow us to observe it)
when both the number of ranks and the write buffer increase. While
timescales are very different in relation to theMPI’s, theMPI’s curve
behaviour follows a very different pattern. Fig. 7.b follows the pat-
tern of a logarithmic curve with the distribution of work in Genseq,

which means that the workload can be equally distributed among
multiple ranks and this will perform a roughly similar decay in
execution time, and this is because ranks are mostly independent
and do not need to wait for each other to keep performing oper-
ations (unless it is necessary to resume the application). Fig. 7.c
shows that, as it was seen in HACC, the execution time decreases
when you increase the number of ranks, while also reinforcing the
analysis of Fig. 7.b.

Also within the same Collective I/O pattern, the results obtained
by using LibCOSwith IOR’sMPI I/O API are shown on the right side
of Fig. 7. While Genseq writes the content in sequential offsets (i.e.,
rank 1 will write from offset 0 to 200, then 200 to 400 until it reaches
all supposed to write), IOR can be set up for writing or reading in
random offsets and that is the major difference in the pattern of
the two applications. We use IOR to write and read files up to 1
gigabyte in size (as this is also the network speed between the HPC
testbed and the cloud testbed) and perform multiple scaling results
for up to 16 ranks and different file sizes. Fig. 7.d displays the weak
scaling in a better scale than the one by Genseq. Ranks are writing
16 MB at a time in multiple chunks with different offsets, which
means that, for every chunk, a new connection to the S3 server
needs to be established and the file sent. In this case, we attribute
the heavy penalty of this delay to our object storage server which is
not able to handle a large number of concurrent connections at the
same time - as seen in Section 5.3, our object storage manager and
daemon consist only of 2 CPU cores each, which may be insufficient
to process the number of concurrent connections IOR is creating.

Figs. 7.e and 7.f display the already expected behaviour based
on the previous experiments and shows that the ordering of the
writing does not matter in our implementation.

7 RELATEDWORK
There are several works integrating HPC and object storage, or HPC
and REST. The FirecREST API [5] is an attempt to externally access
and manage resources in an HPC system, with a focus on i) sub-
mitting processing jobs, and ii) downloading and uploading large
files through the Swift/S3 API, but there aren’t any performance
benefits claimed on the paper aside the portability and easiness
of use. Similarly, since 2020, SLURM has been providing a REST
API (although not web-enabled as FirecREST) that allows clients to
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Figure 6: Plots that show the weak scaling results for (left) PUT and (right) GET operations on HACC using libCOS. Eight ranks
are effectively writing or reading eight times more data in relation to the first.

Figure 7: A panel displaying obtained results for Genseq and IOR applications. (Left) Results for Genseq, where a) does a brief
comparison of execution times between MPI and MPI over S3 through LibCOS, b) displays the scaling behaviour for PUT
operations with 16 ranks and varying sizes of memory buffer, and c) illustrates multiple barplots that allows one see the strong
scaling according to the RAM allocation of Genseq. (Right) Plots for results obtained from LibCOS and IOR, with random
ordering in a shared, single file. d) Weak scaling for multiple ranks and increasing file size, e) a scaling with varying transfer
sizes for PUT, and f) same as previously but for GET operations.
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communicate with the daemon for operations such as submitting
or cancelling jobs and reading data (i.e., partitions, users) from a
cluster.

A paper in 2018 [15] compares the performance of RADOS
(through Ceph), DAOS and OpenStack Swift for HPC in different
contexts - namely, "sequential and large writes", "random and small
writes", and "sequential and large reads". This was done through the
usage of HDF5’s Virtual Object Layer (VOL) plugin, which allowed
the authors to interface existing applications with such systems. It
was shown that i) object stores have better scalability than POSIX
filesystems, ii) that RADOS has the best performance for partial
reads and writes, and iii) that DAOS has "outstanding performance"
for the presented benchmarks. The major issue with the authors’
approach in this paper is that, in the case of Swift (an HTTP-based
REST API), they resorted to building the VOL plugin using Python
over a C interface, as the native C version had over five years with-
out significant updates - and this means that significant newer
features of the HTTP protocol were not evaluated in this work.
Also, given that Python is an interpreted language, interfacing it
with C would cause unacceptable overhead in HPC environments.
Finally, the Swift testbed had also a low network limit of 1 Gbps in
comparison with the DAOS/Ceph testbeds and hence would also
suffer performance degradation when evaluated.

A more recent paper [20] evaluates DAOS with applications that
interface with the HDF5 library, also using the VOL plugin. The
biggest advantage of the presented approach is the fact that only
a few lines had to be modified or included for the applications to
be able to use HDF5 at DAOS. It takes advantage of DAOS-specific
features such as asynchronous I/O, independent object creation and
maps to show performance gains.

There are also a 2022 evaluation in relation of the viability of S3
at Sandia National Laboratories[13]. The reached conclusion is that
the slowness of S3 in comparison to traditional HPC storage is a
trade-off for accessibility, especially when dealing with historical
data (i.e., archiving and exploiting).

It is also worth mentioning that the HDFGroup also developed
an HDF5 REST API specification [9] which is integrated into some
network-based services, such as HSDS and H5serv.

8 DISCUSSIONS AND CONCLUSIONS
In this work, we proposed a native object storage support in MPI
I/O to address diverse data stores across converged HPC and cloud
systems. In particular, we presented an approach to leverage the
native Ceph object storage without imposing POSIX constraints
and the portability of S3 API operations in MPI I/O interfaces. Our
evaluation of common I/O patterns through different applications
on a converged HPC and cloud testbed shows that an object storage
native implementation of MPI I/O can have improved scalability at
increased concurrency in I/O operations. Furthermore, while there
is also a latency associated with accessing cloud storage outside the
HPC system, our characterization study shows that the latency is
amortized at a relatively large transfer size or when the connection
between the HPC and cloud systems is persistent - a model that can
be adopted when using object storage directly from the application
itself.

The most important conclusion derived from the results we
presented here is that the mapping algorithm effectively equalizes
the collective and independent operations — working with smaller
chunks is as effective as working with a single, large, and complex
file. Still, the former has the benefit of reduced complexity. Leaving
such mapping to the object storage API eases the burden for the
developers and allows them to think in "MPI terms" while writing
to object storage systems under the hood.

Furthermore, as there is no enforcement of POSIX consistency
nor the handling of file descriptors by the operating system, the
PUT and GET operations can be asynchronous when each process
just writes or reads an independent chunk. The offloading of the
I/O operations to the object storage server transfers the possible
bottlenecks from the local storage disk to the network bandwidth,
and in cases where the network is not saturated, allows a good
scaling as shown in Section 6.

Lastly, the results show the feasibility of accessing data outside
a local HPC cluster. Even though there is a heavy delay associated
with the connection to the internet, we assume that in peta/exascale
settings, this delay is very minor in comparison to the total process-
ing time of the application, but has the benefit of enabling whole
new possibilities of data usage by scientists and developers.

As a prototype implementation, and due to limited hardware
capacity, e.g., network bandwidth from the HPC testbed to our
cloud testbed. However, the limited connection bandwidth also
represents realistic converged HPC and cloud systems in federated
resources. Moreover, we focused on the high-level design that is
generally applicable to MPI applications and object storage that
supports S3 interfaces. Our future works will aim to integrate even
more with the full MPI I/O standard, make use of multiple threads
to write data from the same buffer and support retrieval or insertion
of data from/to multiple federated object storage servers.

Nevertheless, we believe this work is a step towards the native
adoption of object storage in HPC workloads and also easing the
transition towards emerging federated HPC and cloud resources.
Also, as the adoption of object storage systems increases in the HPC
domain, as motivated by several existing efforts like Intel’s DAOS,
it is expected that more applications will be motivated to leverage
the scalability that the object storage systems might provide.
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