
Profile-guided Frequency Scaling for Latency-Critical Search Workloads
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Abstract—Dynamic frequency scaling is a technique to re-
duce power consumption in computer systems. However, this
technique poses challenges when adopted in latency-critical
applications. Prior work on dynamic frequency scaling is
application agnostic and coarse-granulated in the sense that it
considers the entire application process utilization for decision
making, without the distinction between individual threads or
functions.

This work proposes a finer-grained dynamic frequency
scaling approach for multi-core processors that leverages infor-
mation about the computational intensity of certain functions
in a latency-critical web search application. First, our approach
profiles the running application to identify hot functions for
typical workloads. Next, a run-time scheme is devised to adapt
the individual core frequency whenever a compute-intensive
thread enters or exits a hot function. We implemented and
evaluated our proposal in a real multi-core system. We observed
energy consumption savings up to 28% when compared to the
recent Linux’s Ondemand frequency scaling governor, while
attaining acceptable levels of tail latency constraints.

Keywords-frequency scaling, energy consumption, tail la-
tency, software instrumentation

I. INTRODUCTION

As modern applications are moving from desktop clients
to smaller mobile devices, the processing and storage now
needs to rely on powerful servers in the cloud once locally
present [1]. Examples of such services include web search,
video streaming, file sharing, and word processing applica-
tions.

In data centers, delivering a satisfactory metric of Quality
of Service (QoS) is critical for cloud-hosted services because
service delays may affect user experience and impact com-
panies’ revenue negatively. A study revealed that a delay of 2
seconds in returning web search results may impact revenue
by over 4% per user [2]. For large cloud companies, this
turns out to be a strong negative impact on their business.
The user-perceived QoS is usually determined by the slowest
servers’ response — the tail latency, typically the bottom-1%
(slowest) distribution of the service’s response time [3].

Tail latency implies that in cloud systems where each
server typically answers quickly, but experiencing high 99-
percent latency, all requests will be affected if the request
is handled by a single slow server since the results from
multiple requests are aggregated by a root server before
responding to the user. When scaling the application to use
more servers, the tail latency influence is amplified causing
the overall system to degrade the user experience [3].

While it is possible to guarantee a high quality of service
through the acquisition of better hardware, this may be very
costly and may be economically infeasible as the application
scales. To improve power efficiency, modern multi-core
systems are designed to explore a technique named Dynamic
Frequency Scaling (DFS), in which the frequency of opera-
tion of a certain core may increase or decrease according to
the application’s demand. Given that power consumption is
linearly proportional to core frequency, a lower frequency
will result in less power consumption. Weiser et al. [4]
argued that reducing only the clock speed does not reduce
the amount of instructions needed to be finished per Joule,
once the system must run for longer to perform the same
amount of work.

An implementation of DFS is within the Linux’s On-
demand governor [5], which attempts to minimize energy
consumption by changing the CPU speed according to the
actual load based on CPU utilization thresholds. However,
traditional techniques like this do not take into account
the application behavior or the tail latency constraints of
the running application. Several approaches to this problem
were already developed in the literature, exploring different
concepts and techniques - in particular, scheduling schemes
such as statistical prediction [6], feedback-control state
machines [8], [15], [20], and reinforcement learning [7],
[14] for heterogeneous multi-core systems. These works are
coarse-grained in the sense that it maps the entire application
onto the best CPU configuration, and usually require external
run-time systems that may incur some system overhead.
They are also not designed for taking into account particular
characteristics found in the application, such as entry or exit
of hot functions or the actual thread state, that could be
explored in a more fine-grained frequency scaling.

This work adopts a new approach for latency-critical Java
applications that combines profiling to identify compute-
intensive functions with code instrumentation for thread
monitoring and adaptation. According to data from Alibaba’s
datacenter, more than 90% of latency-critical cloud services
are written and deployed as Java applications [17]. Our
approach profiles the running application to identify hot
functions and uses a run-time scheme to adapt the individual
core frequency based on the activation of the hot functions.
We implemented and evaluated our proposal in a real multi-
core system. We observed energy consumption savings up
to 28% when compared to the recent Linux’s Ondemand



frequency scaling governor (kernel 5.3) while attaining
acceptable levels of tail latency constraints. It is worth
noticing that Ondemand is well crafted and implemented
at the kernel-level.

In Section II, we provide an overview of search workloads
and the scaling governors available on Linux systems. In
Section III, we present empirical observations to motivate
our proposal for a new frequency scaling technique. Section
IV presents our solution. Section V shows our experimental
results. Related Works are present in Section VI. Finally,
conclusions are presented in Section VII.

II. BACKGROUND

A. Latency-Critical Search Workloads

Brin and Page [9] present a seminal overview of how
a web search service is structured. A search engine is
composed of three major independent applications: crawling,
indexing, and scoring. Crawling is related to the fetching of
the contents present in a website. This is usually done by
several automated bots (crawlers) which recursively scan a
webpage and extract all links from it. Indexing is the act
of parsing and storing those crawled pages into an index
for later retrieval. Finally, scoring is related to returning the
most relevant results, based on previously selected attributes,
for the user. Those results are ranked and later returned. We
focus on web search since it is one of the most important
latency-critical applications. For complex keywords and/or
a large number of users, the scoring procedure might take a
longer time, affecting user experience.

B. Elasticsearch

Elasticsearch is an open-source search engine built atop
of Apache Lucene [10], a Java library that executes the
indexing and querying/scoring functions. Like Lucene, Elas-
ticsearch is written in Java and is mainly responsible for
serving the search results through its Application Program-
ming Interface (API) while also allowing Lucene to scale
among clusters. This means that Elasticsearch acts as a front-
end application, responsible for cluster management, thread
pool, queues, and monitoring APIs.

As a distributed application, multiple nodes or machines
comprise an Elastichsearch cluster, which is the biggest unit
in this application. This cluster handles all the non-Lucene
tasks, such as query distribution among shards, creation, and
replication of shards, and maintenance. Each node contains
one or more shards, where each holds a search index. A
request query sent by the user goes through all the shards.
It also has the size property, which is directly associated
with the number of keywords it has.

In our work, we indexed the Wikipedia dataset (see Sec-
tion V for more information) into Elasticsearch to respond
to search queries.

C. Query Generation

FABAN [11] is used as a tool for query generation.
Similar to the usage in CloudSuite [12], the load generator
follows a Zipfian distribution, where 95% of the queries will
have a keyword length between 1 to 8 and the remaining 5%
will have its length between 9 to 18. The upper plot from
Figure 1 shows a histogram for the requests generated by
FABAN in a 30-minute run on the performance governor.
The bottom plot shows the cumulative distributive function
(CDF) of the service time from the same run. As discussed
in Section III, the number of keywords for a query has a
great impact on the service time, with higher keyword sizes
requiring more overall service time.

Figure 1. Statistics from a 30-minute Elasticsearch run with FABAN. The
upper plot shows the histogram of keyword length, ranging from 1 to 16.
The bottom plot shows the CDF of the service times.

In addition to the keyword length, whenever a query
reaches a node on the Elasticsearch cluster, the query is
promptly distributed among a pool of search threads. Those
threads are created exclusively for searching documents
within shards and there is at least one thread per shard. Each
node will perform parallel processing and act independently
on every shard, and each shard will have its own processing
time. In this case, the user-perceived tail latency will be
determined by the slowest shard. Each search thread scores



its results and returns to the compute node, which returns
to the root node of the cluster that sorts the obtained results
and replies to the user.

D. Linux CPUFreq

Frequency scaling on Linux is implemented through an
infrastructure named CPUFreq, which uses frequencies for
identifying operating performance points (known as ’P-
States’) of processors. Scaling drivers provide scaling gov-
ernors with information on the available P-states and access
platform-specific hardware interfaces to change CPU P-
states as requested by scaling governors. The generic Ad-
vanced Configuration and Power Interface (ACPI) CPUFreq
driver provides at least four scaling policies (governors) by
default: performance, powersave, Ondemand [5], and
userspace. The Ondemand governor has been Linux’s
default since kernel 3.4.

The performance governor sets all cores with the high-
est available frequency, while the powersave governor
sets them at the lowest frequency. Ondemand measures the
CPU usage and when this usage is over a certain threshold,
the frequency goes to the maximum and starts decaying
gradually after a certain time, while it can go up again if
necessary. Finally, userspace is a fixed frequency chosen
by the user.

E. Java Run-time Instrumentation

Tracing tools like Linux’s BPF Compiler Collection
(BCC) and DTrace relies on JVM’s probes generated
on run-time through the use of certain flags (e.g.,
-XX:+ExtendedDTraceProbes). Probes are generated
at any thread event (e.g., entry/exit on monitors, waits,
etc) without any filtering. As per Java’s documentation
[19], these probes are associated to severe degradation in
performance.

Since Elasticsearch is written in Java as many enterprise
cloud applications, we explore instrumenting the Java Virtual
Machine (JVM) by designing and implementing a JVM Tool
Interface (JVMTI) agent. An agent is capable of tracing
functions’ states that can help us make frequency scaling
decisions. The JVMTI provides an API for libraries, which
are written in C/C++ through Java Native Interface to be
loaded during the initialization of the JVM, and commu-
nicates directly to both the kernel and the VM itself. The
JVMTI is defined into a JVM specification and part of the
Virtual Machine’s own core implementation. Section V-D
discusses the overhead introduced by the usage of this agent.

III. EMPIRICAL OBSERVATIONS

Before introducing our solution, we present a set of
empirical observations used to guide our design decisions.
Details regarding software and server configurations used in
our experiments are described in detail in Section V. All
experiments in this work were repeated at least three times.

The standard deviation, although present, can be small and
not be easily seen in the plots.

Figure 2. Search requests are executed on multiple frequencies without
any constraints in keyword length. The 99-percentile service time for each
frequency is shown in the upper plot, while energy consumption is shown
in the bottom plot.

Observation 1: Given multiple search requests of different
keyword sizes, running the requests on a single CPU with
the highest operating frequency will finish not later than a
request that ran with a lower CPU frequency.

This means that the overall service time for a web search
can be influenced by the CPU operating frequencies. We
can show this by running multiple requests at different
frequencies. In our case, we performed 3 runs of 5000
requests for each available frequency - there was no filtering
on the keyword length. The results are shown in Figure 2
(upper plot). We can see that the service time of the requests
running at 2.6 GHz (the maximum available frequency) is
the fastest and gets slower as the core frequency decreases.
In particular, the difference in service time between the
frequencies of 1.0 GHz and 2.6 GHz is nearly three-fold.

In this and the following experiments, we group queries
with 3-4 keywords and name them “light queries” (or ”low
keyword count”) and for the ones ranging from 12 to
18 onward, we name them as “heavy queries” (or ”high
keyword count”). The distribution of light vs heavy queries
was chosen based on the number of queries generated by
the load generator (see Section II-C).

Observation 2: Given two different types of requests
considered “light” (3-4 keywords) and “heavy” (12-18



Figure 3. Elasticsearch running with low vs high keyword inputs. The
upper plot shows the 99-percentile service time when the CPU is set to 1.0
GHz vs 2.6 GHz. The lower plot shows the energy consumption on each
processor frequency.

keywords), the “heavy” requests will take longer to finish.
This experiment is to show that requests with more

keywords require more processing capacity than requests
with fewer keywords. To show this, we fixed the keyword
length considering two different frequencies: 1.0 and 2.6
GHz, the minimum and maximum available in the processor.
Figure 3 (upper plot) shows the results in which 2.6 GHz
is always faster than 1.0 GHz for both cases, but “heavy”
requests are significantly slower than the “light” ones.

Each query in Elasticsearch is scored to bring the most rel-
evant search results. Scoring is the most compute-intensive
phase that involves more processing operations for requests
with more keywords as the number of results to score is
usually higher.

Observation 3: Heavy requests tend to consume more en-
ergy than light requests when running at the same frequency.

While it is common sense that higher frequencies con-
sume more energy, we wanted to see if there is any mean-
ingful difference in energy consumption between light and
heavy requests. The results can be seen in Figure 3 (bottom
plot).

In fact, heavy requests consume more energy than their
light counterpart at the same frequency. Heavy requests
make the energy consumption over fourfold higher at the
2.6 GHz frequency. Notice that energy consumption at 1.0
GHz is higher than 2.6 GHz. Reducing only the clock speed
does not reduce the energy consumption, since it is doing
the same work but the system must run longer.

Observation 4: The best energy efficiency point for light
requests is not necessarily the lowest frequency.

We show this by running only light requests while varying
the available frequencies. Figure 2 (bottom plot) shows that
energy consumption starts following a downward trend and
later an upward one. The inflection point - at 2.0 GHz - is the
most relevant here, as it has the lowest energy consumption
while also providing similar service time results when com-
pared to nearby operating points (1.7 and 2.3 GHz); hence,
in this case, the frequency 2.0 GHz has the best energy
consumption.

IV. FREQUENCY SCALING SOLUTION

Our solution works by identifying that individual requests
can demand distinct CPU processing time, thus the fre-
quency can be adjusted to match the request’s demand.
The key idea is to dynamically track the execution stage
of the most compute-intensive threads (i.e., search threads
in Elasticsearch) and to adjust the associated CPU frequency
based on the stage information. The execution stage is
characterized by two information sources: (1) whether or
not the thread is executing a particular hot function, and (2)
for how long it has been running in the hot function.

The main elements of our approach are detailed as fol-
lows.

A. Designing the JVMTI Agent

An overview of our solution is presented in Figure 4. We
design a JVMTI agent, called “Hurry-up“, which consists
of two parts. First, there is an event generator for capturing
function entry and exit calls. Second, there is the frequency
governor that consumes those events and decides the CPU
frequency to run the thread associated with those particular
events. The Hurry-up Agent runs as a separate process from
Elasticsearch at the JVM.

Whenever a user-generated request arrives at Elastic-
search, the request is split among the existing shards. Elastic-
search uses parallel threads to process that particular request
across all the shards. When a search thread enters or exits
the hot function, an event is sent to the JVMTI Agent (Event
Generator) whenever it reaches either the entry or exit point.
After all the shards’ results are scored and sorted, the request
returns to the user. The Event Generator is responsible for
intercepting the hot-function entry or exit events and pushing
them into a global queue.

During the search process, our frequency scaling solution
works by reacting to hot function entry/exit events that
are intercepted at run-time. A flowchart of the frequency
scheduler logic is shown in Figure 5. Recall that every
thread entry/exit to/from the hot function generates an event
that is pushed into the Event Queue that is consumed
by the scheduler. Based on those events, the Scheduler is
responsible for increasing or decreasing the CPU frequency
running each thread based on the executing stage of these
search threads. Each event has information about what core
each thread is running at, a timestamp for detecting if this



Figure 4. Overview of our solution. Every thread entry and exit event on a hot function is intercepted at run-time by the JVMTI agent (shown on the
left). In the JVMTI agent, shown on the right-hand side figure, there is an Event Generator, which pushes the entry and exit data to the Event Queue; the
Frequency Scheduler consumes the events from this queue and performs the CPU frequency changes using the cpufreq Linux interface

thread is over a particular time threshold, and status (e.g.
either an entry or leave event).

The scheduler can be tuned by changing the following
parameters: a threshold time to classify a thread as crit-
ical and to speed it up, and a sleep time to block waiting
for new events to come in the queue that helps minimizing
the overhead of calling the scheduler code too often. In
Section V-F, we show the results of a sensitivity analysis
to understand the impact of tweaking these parameters.

Is there a new event
(entry/exit) in queue?

Iterate over 
search threads

Set avg. freq. 
(2.0 GHz)

Over time 
threshold?

Inside hot 
function?

Set min. freq. 
(1.0 GHz)

Sleep for X ms

Set max. freq. 
(2.6 GHz)

No

No

No

Yes

Yes

Register new event
into internal structure

Yes

Figure 5. Flowchart describing the frequency scheduler logic.

B. Identifying hot functions

To track the execution stage, our approach needs to iden-
tify the application’s hot function. This is done via profiling
during deployment time while running the application with
previous representative input traces.

We generate a Flame Graph of Elasticsearch after
running it using the Linux perf tool (see Figure
6). Based on this plot, we found that the function

Figure 6. Flame Graph of Elasticsearch is used to accurately identify a
hot function by sampling the function call stacks. The x-axis shows the
stack frames and the y-axis shows the depth of each stack frame. Each
stacked box in the figure represents a function call, where the width of a
particular box represents the frequency at which that function was found
in the sampled stack frames.

org/elasticsearch/search/SearchService.
executeQueryPhase dominated about 81% of the
search process. We selected this particular function from
the call stack since it is the top function in the stack from
the search Java package. Elasticsearch may have other hot
functions not relevant to our work, mainly used for other
functionalities such as indexing, and cluster management.

V. EVALUATION

In this section, we describe in detail how our solution was
evaluated.

A. Experimental Setup

We conducted our experiments on a “baremetal”
server instance, provided by the Chameleon Cloud ser-
vice [13]. The server consists of an Intel Xeon Gold



6126 (Skylake architecture), with 196GB of DRAM and
a 220GB SSD disk. We run Ubuntu 19.10 (Linux
kernel 5.3) and Elasticsearch version 6.5.4. For the
search index database, we used the Wikipedia dump ver-
sion enwiki-latest-pages-articles downloaded
in June, 2020.

The CPU is DFS-capable, allowing the operating fre-
quency to be changed on a per-core basis. The operating
frequency can range between 1.0 and 2.6 GHz for each
individual core. Moreover, the CPU has 24 physical cores
equally divided between two sockets. Intel’s Hyperthreading
technology was turned off, so we only consider the physical
core count.

To isolate the network effects in the shared experimental
platform, we configured socket 0 to run the server-side
applications (Elasticsearch) and socket 1 to execute the
load generator (FABAN). The energy measurement was
done through Intel’s Running Average Power Limit (RAPL)
interface. We measured the energy consumption counter
at the beginning of the experiment and at the end; the
difference between those two values is considered the energy
consumed for that particular experiment.

After its initialization, Elasticsearch spans over 70 Java
threads in total. Each thread has a specific function, such
as searching, indexing, system interaction and cluster man-
agement. We configured Elasticsearch to spawn 12 search
threads (same number of cores on the server-side CPU
socket) so that there is one thread per core; this was done
to avoid possible core-sharing interference between search
threads.

The client (FABAN [11]) runs on a separate CPU socket
and is responsible to generate query requests with ran-
domized keywords, ranging between 1 to 18 keywords as
explained in Section II-B. The client is also instrumented to
report the user-perceived response time distribution.

B. Establishing the Baseline

As explained in Section II-D, the Performance gover-
nor sets the cores at the highest frequency, the Powersave
governor sets to the lowest available frequency, and the
Ondemand sets the frequency dynamically depending on
the CPU utilization.

Figure 7 shows an experiment comparing the Linux
governors running Elasticsearch. For this experiment, we set
the QoS target to 99-percentile at 1 second to accommodate
the worst-case scenario with high length keywords. The
powersave governor violates the deadline when Elastic-
search receives queries with high keyword size and almost
violates the deadline with the low keyword length; consid-
ering the standard deviation, the deadline is exactly at 1
second. While powersave reduces the energy consump-
tion for high keyword lengths, it uses more energy than
performance or Ondemand for low keyword lengths.

Figure 7. Linux Governors: 99-percentile latency (upper plot) and energy
consumption (bottom plot). The latency target used for service time is 1
second.

As expected, the Performance governor performs well
on meeting the latency requirement (1 second) but falls
behind Ondemand on energy consumption. Since both
governors can meet the imposed deadline, the Ondemand
was chosen as the baseline for the rest of this section because
of its energy efficiency gains compared to Performance.

C. Comparing with Ondemand

The following experiment is a direct implementation of
the flowchart shown in Figure 5 described in Section IV-A.
We would like to see how our Hurry-up implementation
performed against Ondemand. There are two parameters
for our Hurry-Up governor, one known as “time threshold”
to determine when the core frequency needs to move from
average frequency (2.0 GHz) to maximum frequency (2.6
GHz), and “sampling time” used for collecting the call stacks
and generating the hot-function entry/exit events. For this
experiment, we intuitively set those parameters to 350ms
and 10ms respectively, which are low enough to trigger most
adaptations.

The load generation process consisted of 20 minutes runs
of continuous search queries with low, mixed, and high
keyword inputs. The FABAN workload generator was used
to create 4 clients with each client issuing, on average, one
request per second. The goal was to analyze the service
time behavior of each governor policy considering a single
request at a time.



We performed three runs (of 20 minutes each) for each
combination of keyword length and governor policy and
reported the standard deviation. Note that the “low” keyword
length is fixed at the 3-4 range in order to generate at least
a minimum load in the system, while the “mix” setting goes
between 1 to 18 keywords (see Figure 1 for more details).

Figure 8. An experiment comparing Ondemand against Hurry-up on
Service Time (upper plot) and Energy Consumption (bottom plot).

The result of Hurry-up when compared with Ondemand
is shown in Figure 8. While both approaches satisfy
the deadline, our Hurry-up policy has energy-saving that
amounts up to 6% in comparison to the Ondemand gover-
nor, specially on high-load keywords. This is because both
Ondemand and Hurry-up concentrate most of their idle
time at 1.0 GHz to minimize energy consumption when
not performing actual search ranking. Figure 9 shows the
distribution of time spent on relevant frequencies for each
policy. Hurry-up uses the average (2.0 GHz) frequency for
most of the search execution and promotes only the heavy
queries to run at the maximum frequency (2.6 GHz); these
queries are 5% of the Zipfian distribution (Section II-C).

Figure 9. Distribution of time spent on a particular CPU frequency
when using Ondemand and the initial Hurry-up implementation. The label
“others” refers to all other frequencies between 1.2 and 2.4 GHz.

Whenever there is a spike in CPU usage, e.g., by sequen-
tially processing requests with different keyword lengths,
Ondemand sets the CPU frequency to maximum (2.6 GHz),
which is not the most efficient in the average cases since
typically not all requests would require this speed. As will
be seen later in Section V-G, the difference between Hurry-
up and Ondemand becomes more prominent with a higher
load.

D. Overhead Analysis

We evaluate the overhead of our Hurry-Up implemen-
tation with a CPU scaling governor embedded into the
JVM/Elasticsearch. To perform the analysis, we used the
original code base but without any frequency scaling interac-
tion and compared it against Hurry-up with a fixed frequency
setting (through the userspace governor) without calling
the scheduler logic.

Figure 10. Overhead Comparison of the Implemented Agent on (upper)
Service Time and (bottom) Energy Consumption.

Figure 10 illustrates the measured overhead for each case.
For service time, the overhead averages to about 0.1 seconds
in absolute term, but amounts to about 10% at 1.0 GHz and



40% at 2.6 GHz. This is less problematic on the energy
consumption side, where the energy overhead from the
scheduler is 5% for 1.0 GHz and 11% for the other case. We
use low-keyword queries to minimize potential additional
stress that might be caused by high-keyword queries, thus
amplifying the signal-to-noise ratio. In sum, there’s a mod-
erate to severe overhead with the agent introduction, but this
overhead is mitigated by the benefits our solution produces.

This overhead can be explained by the JVMTI agent
interrupting the search thread for a very brief moment to
collect call stack data to capture hot-function entry or exit
events. Also, the agent itself generates one more thread that
performs bookkeeping operations, such as manipulating the
event queue. In Section V-F, we show the effects of adjusting
the sampling time parameter.

E. Analysis of C-states

The CPU has different modes of operations collectively
called C-States. The Skylake Architecture has four C-States,
namely C0, C1, C1E, and C6, where C0 is the fully active
and C6 is the lowest energy state (including 0 Voltage). An-
alyzing the processor’s C-States is necessary to understand
the behavior of both Ondemand governor and our Hurry-up
Implementation.

The C-States can be controlled through the /sys/fs in-
terface and it has a per-core per-state granularity. First,
we compare how our implementation and the Ondemand
governor performs in service time and energy consumption
when only the C0 state is available and when all states are
available. Table I shows the results for the experiment of
varying the C-states of the CPU.

Table I
SERVICE TIME AND ENERGY CONSUMPTION PER C-STATE (NO KW

CONSTRAINT)

Service
Time (ms)

Ond.
Low Env.

Ond.
High Env.

Hurry-up
Low Env.

Hurry-up
High Env.

Only C0 0.418 0.837 0.458 0.9
All States 0.357 0.689 0.459 0.788
Energy
Consump. (kJ)
Only C0 30.915 40.763 29.27 36.660
All States 20.525 44.310 18.705 35.635

While we could not make a definitive correlation between
the C-states and the service time, we noticed that the
energy consumption for “Only-C0” mode is higher than
when executing in “All States” mode. This is because the
consumption when the processor is at sleep state is lower
than running at the lowest available frequency of 1.0 GHz.
Table II shows the time spent (in clock-tick units) per state
when running with all states enabled.

For low keywords, both Hurry-up policy and Ondemand
governor spent much longer time at the C6 state, meaning
that most of the idle time was at the lowest energy level.

Table II
NUMBER OF CALLS PER C-STATE

Ond.
Low Env.

Ond.
High Env.

Hurry-up
Low Env.

Hurry-up
High Env.

C0 45.034 22.279 37.836 43.234
C1 119.163 52.560 31.213 38.914
C1E 141.273 137.206 206.654 416.103
C6 573 x 106 417 x 106 547 x 106 354 x 106

The difference in consumption can be explained by Hurry-
up executing low queries at an average level of 2.0 GHz,
while Ondemand operates at 2.6 GHz. In the long run, a
higher difference in consumption may be seen and even more
favorable for the Hurry-up implementation.

For higher keywords, Hurry-up spends more time on
activity (C0 State), but at a lower frequency. As shown in
more detail in Section III, this lower frequency translates
to a lower energy consumption even at the cost of a small
delay on service time.

F. Sensitivity Analysis

Our implementation of the Hurry-up policy allows us to
choose two parameters: the “sleep” time, which is responsi-
ble for the interval time of the scheduler, and the “threshold”,
the time when we consider a request as a heavy one and
decide that we need to change frequencies.

Tables III and IV show the results of this experiment on
service time and energy consumption. To isolate the effects
of varying the threshold, we fixed the sleep time at 10 ms
and varied the threshold for the values of 150 ms, 300 ms,
450 ms, and 600 ms. We notice that energy consumption
tends to decrease as the threshold increases, and the service
time follows the opposite trend.

Table III
SENSITIVITY ANALYSIS: SERVICE TIME

Threshold (ms) 150 ms 300 ms 450 ms 600 ms
Low Env. 0.373 0.438 0.525 0.453
High Env. 0.705 0.8 0.9 0.9

Sleep (ms) 5 ms 10 ms 20 ms 50 ms 100 ms
Low Env. 0.455 0.438 0.408 0.518 0.518
High Env. 0.85 0.8 0.825 0.825 0.85

Higher queries mean that the threshold will be an impor-
tant parameter on how much time they will run at either
2.0 or 2.6 GHz. As the threshold value increases, the time a
thread stays at 2.0 GHz also increases - thus a decrease
in energy consumption is already expected. The chosen
parameter, in this case, was 450 ms. Although a 600 ms
threshold might appear to work better, we believe that it can
be an issue when the load consists of only very-high queries;
thus, the service time would be a lot more affected.

For the sleep parameter, we fixed the threshold at 300
milliseconds and tried values of 5, 10, 20, 50, and 100 ms.
Overall, there was a small service time overhead when using



very small or very large values. In the end, we chose 50 ms
as the default parameter.

Table IV
SENSITIVITY ANALYSIS: ENERGY CONSUMPTION

Threshold (kJ) 150 ms 300 ms 450 ms 600 ms
Low Env. 20.85 19.41 18.48 19.32
High Env. 39.3 37.07 34.63 32.34

Sleep (kJ) 5 ms 10 ms 20 ms 50 ms 100 ms
Low Env. 19.66 19.41 19.65 18.1 18.09
High Env. 36.46 37.07 36.44 35.69 35.8

G. Results with tuned parameters at higher load

Based on the sensitivity analysis, we tuned our implemen-
tation with the parameters of 450ms for the time threshold
and 50ms for the sleep time. We kept the load at a minimum
to understand the impact on the service time. Results can be
seen in Figure 11. While both schemes meet the deadline,
Hurry-up has an energy consumption of about 17% less
than the one by Ondemand at the high keyword length
environment. The Zipfian distribution, used by FABAN and
CloudSuite, favors very low keyword lengths (e.g., 1 and 2
keywords happens more than 3 and 4), hence why the “Mix”
has a lower service time than the “Low” (3-4 keywords in
size). For this experiment, the difference between Ondemand
and Hurry-up in energy consumption favors Hurry-up in
about 2%.

Figure 11. Comparison of the results at higher load, showing service
time (upper plot) and energy consumption (bottom plot) for each frequency
scaling scheme (Ondemand and Hurry-up).

To scale the application to respond to more clients and
queries, we increased the request-per-second rate three-fold.
At such a high load, both Ondemand and Hurry-Up violate
the target deadline when all queries have high keyword
length, hence why they are not shown here.

Figure 13 shows the obtained results for a higher load. For
low and mix keyword lengths, when both schemes meet the
specified deadline, the difference in energy usage between

Figure 12. Distribution of time spent on a particular CPU frequency
when using Ondemand and the calibrated Hurry-up implementation. The
label “others” refers to all other frequencies between 1.2 and 2.4 GHz.

Figure 13. Comparison of the results for a 3x base load. (Upper) Service
time and (bottom) energy consumption for each governor.

Ondemand and Hurry-up was noticeably more pronounced.
In particular, the energy savings of Hurry-up increased to
22% for the mix load input and 28% for the low keyword
length. Due to the CPU at a higher load, Ondemand stays
most of the time at the highest available frequency (2.6
GHz), which hinders the energy savings. Hurry-up can
respond to all requests within the deadline adjusting the CPU
frequency more carefully between average to maximum, thus
it can save more energy. Figure 12 shows the time spent per
frequency illustrating this point.

Based on the results presented, our major findings are
as follows. In search workloads, we observed variability in
service times depending on the CPU frequency chosen and,
thus, an energy usage difference between light and heavy
requests. The best frequency for running lighter and mid
requests was found to be a midpoint (2.0 GHz in our case).
As for heavy requests, since they are prominent to lose
the imposed deadline, it is indeed necessary to run them
at the highest available frequency. Regarding the C-states



capability, when the CPU is not able to return to the C6
state for idling, the lowest energy consumption will be at
the lowest available frequency.

VI. RELATED WORK

Recent literature shows a myriad of related works on
frequency scaling of applications with dynamic usage of
computational resources. While this work is original in its
methodology using profile-driven CPU scaling on search
workloads, the ones that have some degree of similarity to
this paper are Pegasus [18], Rubik [6] and Hipster [7].

Both Pegasus and Rubik rely on dynamic-variable
frequency-scaling processors intending to optimize power
consumption. Pegasus’ paper introduces the iso-latency pol-
icy, which monitors point-to-point task latency and modifies
energy configurations of all servers so they reach the dead-
line accordingly. The Running Average Power Limit (RAPL)
technology, available only in Intel processors, is used for this
purpose and allows user-level definitions of a power limit
threshold for the CPU.

Pegasus explores RAPL to implement its iso-latency pol-
icy. In essence, whenever data reveals that there’s room
for latency, Pegasus lowers the allowed power level; else,
when the latency is nearing the deadline, Pegasus increases
the allowed power level. The main issue with Pegasus’
approach is the dependence on Intel-only technology, which
is not effective for other system architectures (e.g., ARM,
PowerPC) or other chip manufacturers (e.g., AMD). Rubik
uses a similar data analysis approach but without using
RAPL.

The central idea in Rubik is the development of a statisti-
cal model that uses service time data collected on execution
time to overcome the computational uncertainties of each
request. This allows the model to predict which is the lowest
frequency that will not violate the deadline - and each time a
new request arrives, a new prediction is made and frequency
is changed accordingly.

Hipster’s approach uses Reinforcement Learning to dy-
namically schedule tasks in heterogeneous cores at the same
time that chooses optimizes DVFS parameters. The problem
is solved through the Markov Decision Problem where the
algorithms get a point if it’s right and loses a point if the
answer is wrong (i.e., the request was replied to after the
deadline). Hipster instantiates a QoS monitor which collects
all the related data, and this allows the decision mapping
of a thread to a set of processors which can follow either a
resource management policy or a power efficiency policy.

VII. CONCLUSION

This work has shown that it is possible to optimize the
energy consumption using DFS while maintaining a similar
level of QoS compared to existing DFS techniques. We
analyzed how search requests behave and which frequency
is most suitable for each request class. We developed an

approach based on the observation that each request class
needs a different frequency setting and implemented a proof-
of-concept scheme in the Elasticsearch/Lucene. Our scheme
was compared against the Ondemand governor, which is the
mainstream solution on Linux, and obtained energy-savings
up to 28%.
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